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We present numerical results for an S=1 /2 Heisenberg antiferromagnet on an inhomogeneous square lattice
with tunable interaction between spins belonging to different plaquettes. Employing quantum Monte Carlo, we
significantly improve on previous results for the critical point separating singlet-disordered and Néel-ordered
phases and obtain an estimate for the critical exponent � consistent with the three-dimensional classical
Heisenberg universality class. Additionally, we show that a fairly accurate result for the critical point can be
obtained from a contractor renormalization expansion by applying a surprisingly simple analysis to the effec-
tive Hamiltonian.
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I. INTRODUCTION

The square lattice quantum Heisenberg antiferromagnet
�SLQHA� with spin S=1 /2 is one of the paradigmatic mod-
els in condensed-matter physics and has been extensively
investigated in the last two decades, mainly in connection
with the parent compounds of cuprate superconductors.1

Good agreement with experimental data is obtained from the
analysis of an effective continuous field theory rigorously
justified in the limit of large spin S given by the
�2+1�-dimensional nonlinear � model �NL�M�.2 The cou-
pling g in the NL�M controls the transition between Néel-
ordered and quantum-disordered phases and it can be shown
that the SLQHA maps to the renormalized classical regime
of the NL�M �g�gc�, which therefore has a long-range-
ordered ground state.1,2

The proximity to a quantum critical point may, however,
lead to a crossover to a finite temperature quantum critical
regime where thermodynamic quantities are affected by
strong quantum fluctuations and display universal
behavior.2,3 Nevertheless, numerical simulations4 indicate
that this crossover may be too narrow to be detectable pos-
sibly due to the fact that the SLQHA is deep inside the renor-
malized classical regime. This difficulty has motivated the
investigation of antiferromagnets defined on decorated
square lattices where the proximity to a quantum critical
point separating singlet-disordered and Néel-ordered phases
is controlled by adjusting couplings in the Hamiltonian.5–10

We consider an S=1 /2 Heisenberg Hamiltonian defined
on the “plaquettized” square lattice depicted in Fig. 1,

H = J�
�i,j�

S� i · S� j + J� �
�i, j��

S� i · S� j . �1�

J ��i , j�, bold lines in Fig. 1� and J� ��i , j��, thin lines in Fig.
1� are, respectively, intraplaquette and interplaquette nearest-
neighbor antiferromagnetic interactions. Since the model is
self-dual under the transformation J↔J�, we apply the re-
striction J��J without losing generality and set J=1. Simi-
larly to what happens with the aforementioned models with
tunable interactions,5–10 the ratio J� /J �equivalent to g−1 in
the NL�M� controls the magnitude of quantum fluctuations

and a quantum phase transition at JC� /J belonging to the uni-
versality class of the three-dimensional �3D� classical
Heisenberg model2 separates a disordered singlet phase at
low J� /J from the renormalized classical state at J� /J=1,
where the original SLQHA is recovered. Previous results for
this “plaquettized” Heisenberg antiferromagnet were ob-
tained analytically,11 from series expansions,11,12 exact diago-
nalization of small clusters,13,14 and by diagonalizing the ef-
fective model obtained from a contractor renormalization
�CORE� expansion.15,16 The currently best estimate for the
critical point �JC� /J=0.555�10�� was obtained from an Ising
series expansion.12

We investigate the model defined by Eq. �1� by means of
quantum Monte Carlo �QMC� simulations and CORE with a
twofold purpose. First, we would like to improve on previous
estimates11–16 for the quantum critical point. This might pave
the way to future investigations of, for instance, the effects of
impurities in a quantum critical antiferromagnet.17–19 Sec-
ond, we are interested in testing the quality of the results
obtained from a CORE expansion including longer-ranged
effective interactions than in Refs. 15 and 16 and by apply-
ing a simpler analysis to the effective Hamiltonian.

J

J’(b)

(a)

(c)

FIG. 1. �Color online� The “plaquettized” square lattice consid-
ered in this Brief Report: nearest-neighbor spins lying on the same
�neighboring� plaquette�s� interact via superexchange J �J�� repre-
sented by thick �thin� continuous lines �see Eq. �1��. Dashed lines
highlight the clusters employed in obtaining the range-1 �a�, -21/2

�b�, and −2 �c� CORE results.
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II. NUMERICAL RESULTS

A. Quantum Monte Carlo

We have performed QMC simulations for the model de-
scribed by Eq. �1� by employing the ALPS �Algorithms and
Libraries for Physics Simulations� libraries’20 implementa-
tion of the directed loops algorithm21,22 for the stochastic
series expansion �SSE� representation.23 Lattices with L�L
sites �L /2�L /2 plaquettes� with L up to 36 have been con-
sidered with periodic boundary conditions along both direc-
tions. Temperatures are set so as to ensure that ground-state
properties are accessed: For each system’s size, simulations
were performed for inverse temperatures �n=2n so that the
obtained averages agreed �within error bars� for �n and
�n−1.24 We have calculated the spin stiffness �S and the
second-order Binder cumulant for the staggered magnetiza-
tion Q2. The spin stiffness is obtained in terms of the wind-
ing numbers wx and wy,

�S =
1

2�L2 �wx
2 + wy

2� , �2�

and is expected to scale close to the critical point like
�S�L2−d−z, where d=2 is the dimensionality and the dy-
namic critical exponent is expected to be z=1.25 Therefore
the quantity �SL should assume a size-independent value at
the critical point, something confirmed by our results shown
in Fig. 2�a�. The second-order Binder cumulant for the stag-
gered magnetization �ms

z� is defined as

Q2 =
��ms

z�4�
��ms

z�2�2 . �3�

Q2 also displays universal behavior in the critical regime and
curves for different lattice sizes cross close to the critical
point �not shown�.

In order to locate the quantum critical point JC� /J, we first
analyze the scaling behavior of the intersection points be-
tween curves for �SL and Q2 obtained for lattice sizes
�L ,2L�. Crossing points are determined by performing linear
and quadratic fits to different data subsets and deviations
between different estimates are used in setting �generous�
error bars. The so-obtained results are plotted in Fig. 2�b� as
a function of 1 /L. We remark that, similarly to what was
found in Ref. 10 for dimerized magnets, fastest convergence
to the thermodynamic limit is attained for �SL and therefore
focus on the results for this quantity in what follows.26 Since
the curvature for the crossing points decreases with increas-
ing L �Fig. 2�b��, an upper bound for JC� /J is simply obtained
by applying a linear extrapolation to the three largest �L ,2L�
crossing points; a lower bound is directly given by the cross-
ing point for the largest pair �L ,2L�. In this way, we arrive at
the result JC� /J=0.5485�12�.26

In trying to achieve higher accuracy and additionally es-
timate the critical exponent associated to the correlation
length �, we employ the scaling ansatz

�S�t,L� = L−1f�S
�tL1/�� , �4�

with reduced coupling t= �J�−JC� � /JC� . By plotting �SL versus
tL1/� and adjusting the values of JC� /J and �, we achieve data

collapse for JC� /J=0.5472�8� and �=0.71�1� as shown in Fig.
2�c�.26

Our results for JC� /J are consistent with earlier
estimates11–16 but improve on the previously best result
�JC� /J=0.555�10�; Ref. 12� by one order of magnitude. Fur-
thermore, our estimate for the critical exponent � is compat-
ible with the most accurate result for the 3D classical Heisen-
berg model ��=0.7112�5�; Ref. 27� as expected from the
mapping onto a NL�M.2 Further improvements in the values
for JC� /J and � may be achieved by simulating larger systems
and/or applying a more sophisticated data analysis taking
into account subleading finite-size corrections.10,28

B. Contractor renormalization

The CORE method30,31 is a tool in deriving low-energy
effective Hamiltonians for lattice models and was previously
applied to the spin Hamiltonian on the modulated square
lattice �Eq. �1�� by Capponi et al.15,16 We extend their results
by deriving a longer-ranged CORE expansion. We also no-
tice that our CORE expansion is essentially a strong-
coupling �on-site repulsion U→�� version of the one de-
rived in Ref. 32 where an effective Hamiltonian for the
Hubbard model on the square lattice was obtained, but we
have the advantages of a more natural motivation for choos-
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FIG. 2. �Color online� �a� SSE-QMC data for spin stiffness �S

multiplied by the system’s size L as a function of the interplaquette
coupling J� /J for temperatures T�1 /2L. Error bars are much
smaller than the symbols’ size. �b� Convergence of the intersection
points for curves L and 2L for �SL �data shown in �a�� and second-
order Binder cumulant Q2 �not shown�. Extrapolation �see main
text� gives us the estimate JC� /J=0.5485�12� for the critical point.
�c� Data collapse for �SL is attained for JC� /J=0.5472�8� and �
=0.71�1� using the scaling ansatz of Eq. �4�.
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ing the plaquettes as elementary blocks and of the absence of
charge degrees of freedom.

We start by noticing that the original spin model described
by Eq. �1� is particularly amenable to a CORE analysis, for
the strongly coupled plaquettes are a natural choice as the
elementary blocks �see Fig. 1; for details on the CORE pro-
cedure the reader is referred to Refs. 16 and 32�. The re-
tained low-lying block states are the plaquette’s singlet
ground state 	s� and the triplet states 	t	� with 	=−1,0 , +1
denoting the total Sz component. This choice for the re-
stricted local basis is justified by the fact that 	s� and 	t	� are
the lowest block’s eigenstates and also, as shown by Capponi
et al.,15,16 by their large weight in the density matrix of a
plaquette embedded in a larger cluster. Effective couplings
between these retained block states are obtained by subse-
quently diagonalizing a cluster comprised of connected
plaquettes: A matching number of the cluster’s low-lying
eigenstates is projected upon the basis formed by the tensor
products of local singlets and triplets, an effective Hamil-
tonian being obtained by imposing the constraint that the
cluster’s low-energy spectrum is exactly reproduced and by
subtracting interactions previously obtained from clusters in-
volving lesser plaquettes. We employ the clusters highlighted
in Fig. 1 and label the results according to the longest range
effective couplings obtained at each step of the CORE ex-
pansion: Range-1 interactions are obtained from the cluster
comprised by two connected plaquettes depicted in Fig. 1�a�,
range-21/2 from a four-plaquette cluster �Fig. 1�b��, and
range-2 from the cluster displaying three aligned plaquettes
shown in Fig. 1�c�.

The effective model resulting from the above procedure is
expected to evidence dominant microscopic mechanisms at
play in the original model and physically sound results are
ideally obtained by means of a simplified subsequent analy-
sis. We stress that our approach differs from the previous
one15,16 in a crucial way: While Capponi et al.15,16 restricted
their CORE expansion to the shortest range and studied the
resulting range-1 effective Hamiltonian by means of exact
diagonalizations, we expect that good results are obtainable
in a simpler way from an extended CORE expansion includ-
ing longer-ranged interactions. Accordingly, we locate the
quantum critical point by determining the value of J� /J
where the gap for triplet excitations �
� vanishes and esti-
mate 
 from the effective CORE Hamiltonian simply as


 = �t − 4�t1 + t2 + t3� . �5�

�t is the chemical potential for triplet excitations above the
singlet ground state for low J� /J and the second term ac-
counts for the triplons’ kinetic energy: t1 is the nearest-
neighbor �NN�, t2 is the next-NN, and t3 is the third-NN
hopping amplitudes.33 In other words, Eq. �5� is the energy
of an isolated triplon in a singlet sea.

Results for 
�J� /J� obtained from range-1, range-21/2,
and range-2 CORE expansions are shown in Fig. 3 compared
with the ones obtained from the plaquette series expansion
derived in Ref. 12.29 As expected, all results mutually agree
in the limit of small J� /J where they are essentially exact; for
larger J� /J, range-21/2 and range-2 CORE results underesti-
mate 
. However, the values of J� /J where range-21/2 and

range-2 results for 
 vanish are in surprisingly good agree-
ment with the QMC results for JC� /J presented in Sec. II A:
J� /J
0.5513 for range-21/2 and J� /J
0.5491 for range-2.
These values are seemingly converging very fast to a result
consistent with the QMC estimates and this suggests that the
procedure employed here might lead to more precise esti-
mates for the critical point than the one employed in Refs. 15
and 16 where JC� /J=0.55�5� was obtained. We conjecture
that this unexpected accuracy is related to level crossings
observed close to the point where 
 vanishes. However, ob-
viously we cannot discard the possibility that this remarkable
agreement is coincidental and remark that poorer results are
obtained for intermediate values of J� /J with the conse-
quence that 
 from CORE does not follow a power law �as
seen from a logarithmic plot, not shown�. However, it is
desirable to further test the procedure employed here by con-
sidering similar spin models.5–10

III. CONCLUSIONS

Summarizing, we have investigated an S=1 /2 Heisenberg
antiferromagnet on a “plaquettized” square lattice �Fig. 1� by
means of QMC and CORE. Our results for the quantum criti-
cal point separating the gapped-singlet and Néel-ordered
phases, JC� /J=0.5485�12� and JC� /J=0.5472�8�, obtained
from QMC simulations, substantially improve on previous
estimates,11–16 and the obtained critical exponent �=0.71�1�
is consistent with the tridimensional classical Heisenberg
model universality class27 as expected from the mapping to a
NL�M.2

We also highlight the surprisingly good result for the criti-
cal point extracted from a simple analysis of range-21/2 and
range-2 effective CORE Hamiltonians. However, it is not
presently possible to exclude the possibility that the good
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FIG. 3. �Color online� �a� Spin gap in the disordered phase of
the spin model on the modulated square lattice described by Hamil-
tonian Eq. �1�. Results have been obtained from a plaquette series
expansion �Ref. 29� �circles; Ref. 12� and various range CORE
analysis �see main text�. The vertical dashed lines indicate values of
J� /J consistent with the critical point obtained from QMC simula-
tions �JC� /J� �0.5466,0.5497��. The zoom in the inset �b� shows
that values for the critical point consistent with the ones obtained
from QMC are obtained from range-2 �squares� CORE results
�range-21/2 results are represented by red circles�.
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agreement with QMC is coincidental and it would be inter-
esting to further test the procedure employed here. The fact
that CORE is immune to the infamous sign problem opens
interesting research possibilities, and fermionic systems on a
geometry similar to the one considered here34 may be inves-
tigated.

Note added. While preparing the manuscript and after fin-
ishing our simulations, we became aware of work by Wenzel
et al.35,36 in which dimerized and quadrumerized two-
dimensional antiferromagnets are investigated by QMC. By

employing a more sophisticated data analysis and simulating
larger lattices, they obtain more precise estimates for the
critical point for the model considered in the present work.
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